Plasmacytoid dendritic cells support melanoma progression by promoting Th2 and regulatory immunity through OX40L and ICOSL.

نویسندگان

  • Caroline Aspord
  • Marie-Therese Leccia
  • Julie Charles
  • Joel Plumas
چکیده

Even though melanoma is considered to be one of the most immunogenic solid tumors, handling its development remains a challenge. The basis for such escape from antitumor immune control has not yet been documented. Plasmacytoid dendritic cells (pDC) are emerging as crucial but still enigmatic cells in cancer. In melanoma, the function of tumor-infiltrating pDCs remains poorly explored. We investigated the pathophysiologic role of pDCs in melanoma, both ex vivo from a large cohort of melanoma patients and in vivo in melanoma-bearing humanized mice. pDCs were found in high proportions in cutaneous melanoma and tumor-draining lymph nodes, yet associated with poor clinical outcome. We showed that pDCs migrating to the tumor microenvironment displayed particular features, subsequently promoting proinflammatory Th2 and regulatory immune profiles through OX40L and ICOSL expression. Elevated frequencies of interleukin (IL)-5-, IL-13- and IL-10-producing T cells in patients with melanoma correlated with high proportions of OX40L- and ICOSL-expressing pDCs. Strikingly TARC/CCL17, MDC/CCL22, and MMP-2 found in the melanoma microenvironment were associated with pDC accumulation, OX40L and ICOSL modulation, and/or early relapse. Thus, melanoma actively exploits pDC plasticity to promote its progression. By identifying novel insights into the mechanism of hijacking of immunity by melanoma, our study exposes potential for new therapeutic opportunities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melanoma hijacks plasmacytoid dendritic cells to promote its own progression

Despite their elevated immunogenicity, melanoma lesions often escape immunosurveillance. We have recently demonstrated that plasmacytoid dendritic cells (pDCs) accumulating within melanomas are prompted to express tumor necrosis factor (ligand) superfamily, member 4 (TNFSF4, best known as OX40L) and inducible T-cell co-stimulator ligand (ICOSL), hence becoming able to trigger TH2 and regulatory...

متن کامل

Plasmacytoid dendritic cells regulate Th cell responses through OX40 ligand and type I IFNs.

Dendritic cells (DCs) show a functional plasticity in determining Th responses depending on their maturational stage or on maturational signals delivered to the DCs. Human plasmacytoid DCs (PDCs) can induce either Th1- or Th2-type immune responses upon exposure to viruses or IL-3, respectively. In this study we have investigated the Th-polarizing capacity of PDCs after short (24-h) or long (72-...

متن کامل

TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand

We recently showed that dendritic cells (DCs) activated by thymic stromal lymphopoietin (TSLP) prime naive CD4(+) T cells to differentiate into T helper type 2 (Th2) cells that produced high amounts of tumor necrosis factor-alpha (TNF-alpha), but no interleukin (IL)-10. Here we report that TSLP induced human DCs to express OX40 ligand (OX40L) but not IL-12. TSLP-induced OX40L on DCs was require...

متن کامل

Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice.

A prerequisite for strong adaptive antiviral immunity is the robust initial activation of the innate immune system, which is frequently mediated by TLR-activated plasmacytoid DCs (pDCs). Natural antitumor immunity is often comparatively weak, potentially due to the lack of TLR-mediated activation signals within the tumor microenvironment. To assess whether pDCs are capable of directly facilitat...

متن کامل

Dendritic cell expression of OX40 ligand acts as a costimulatory, not polarizing, signal for optimal Th2 priming and memory induction in vivo.

Costimulatory cross-talk can occur at multiple cellular levels to potentiate expansion and polarization of Th responses. Although OX40L ligand (OX40L) is thought to play a key role in Th2 development, the critical cellular source of this molecule has yet to be identified. In this study, we demonstrate that OX40L expression by the initiating dendritic cell (DC) is a fundamental requirement for o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer immunology research

دوره 1 6  شماره 

صفحات  -

تاریخ انتشار 2013